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Summary 

Stone’s Tensor Surface Harmonic Theory has been successfully applied to three- 
connected polyhedral molecules of the Main Group and transition elements. The 

skeletal molecular orbitals consist of four (S” and P") radial bonding molecular 
orbitals, (n - 4)/2 bonding L”( L > 1) surface molecular orbitals and (n - 2) L” and 
z” matching non-bonding molecular orbitals. These molecules have 3n/2 skeletal 
molecular orbitals and are characterised by a total of 5n valence electrons. The 
corresponding transition metal polyhedral molecules are characterised by 15n elec- 
trons. 

The development of the cluster chemistries of the Main Group and transition 
metals has been assisted by the formulation of simple electron counting rules 
described collectively as the Polyhedral Skeletal Electron Pair Approach [l-3]. These 
rules are summarized in Table 1. The theoretical basis of the rules has been 
examined using a range of theoretical techniques. Generally these have been based 
on specific MO calculations or graph theoretical approaches [4,5]. 

Stone [6-91 has developed an elegant methodology based on spherical harmonics 
with scalar, vector and tensor properties (Tensor Surface Harmonic Theory) which 
has neatly accounted for the bonding characteristics of deltahedral molecules. In the 
Tensor Surface Harmonic analysis clusters are treated as sets of atoms distributed 
over the surface of a sphere. The position of each atom (i) is defined by the angular 
coordinates (19,, cp,). The frontier orbitals of E-H (E = B or C), or isolobul fragments 
[lo], comprise one inward pointing (radial) hybrid and two tangential p (or dp 

hybrid) orbitals which may lie along the line of increasing 8 (p*) or ‘p (p”). 

Values of the scalar harmonics [6] q,(@,,(p,) at each atom i are used as the 
coefficients in an LCAO expansion (with the basis set being the radial atomic hybrid 
orbitals a,) generating a set of n cluster MOs (where n is the number of atoms in the 

cluster). 
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TABLE 1 

SUMMARY OF POLYHEDRAL SKELETAL ELECTRON PAIR APPROACH” POLYHEDRAL 

ELECTRON COUNT (p.e.c.) 

Polyhedral 

type 

Deltahedra (&so-) 

nido- 

arachno- 

Three-connected 

polyhedra 

Main Group Example 

4ni2 B,H,‘- 

4n +4 B,H,+I 
4n +6 B,H,+e 

5n C,H, 

Transition 

metal 

14n +2 
14n +4 

14n +6 

15n 

Example h 

Os,(CO),, 

Ru,C(CO),s 

lOs,H,l(CO),,I 

Ir,(CO),, 

Ring compounds 6n C,H,, 1611 Os,(CO),, 

Condensed polyhedra derived from A (p.e.c. a) and E (p.e.c. h) ‘ 
Vertex shared a+h-18 

Edge shared aih-34 

A-face shared a+h-48 

u D.G. Evans and D.M.P. Mingos, Organometallics, 2 (1983) 435. ’ B.F.G. Johnson and J. Lewis, Phil. 

Trans. R. Sot. Lond., A308, (1982) 5. ’ D.M.P. Mingos, J. Chem. Sot., Chem. Commun., (1983) 706. 

The quantum numbers I and m are analogous to those obtained in the solution of 
the Schrodinger equation for the hydrogen atom. The skeletal MOs are designated 
LP,,, where L represents one of the symbols S, P, D.. . according to I = 0,1,2.. . . 

Lz and zz, cluster MOs are obtained by taking the vector surface harmonics V,“,, 
and V,: as LCAO expansion coefficients, where the basis set is now the set of p* and 
pv orbitals. 2n p6/pv orbitals give rise to nL” and ~1” surface MOs. These orbitals 
have the opposite symmetry under inversion and are related by an operation 

TRANSFORMATION 

described as a parity transformation. This involves the rotation, in the same sense, of 
each atomic p orbital in an Lz, MO by 90" about a radial axis passing through the 
atom. The corresponding zz, MO is generated by this operation as shown in 1. 

Stone’s approach accounts in a very general manner for the 4n + 2 electron rule 
for Main Group deltahedral clusters [7] (14n + 2 for the corresponding transition 
metal compounds). Deltahedral geometries are preferred for “electron deficient” 
Main Group clusters because they maximize the number of nearest neighbour 
bonding interactions. The n + 1 skeletal bonding MOs associated with these mole- 
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cules arise from four strongly bonding radial (SO + 3P”) MOs (though the P” 
orbitals have a significant amount of P” character mixed into them) [ll] and n - 3L” 
(L > 1) surface MOs. 

Not all spherical polyhedral molecules have 4n + 2 electrons, however. The 
three-connected molecules illustrated in Fig. 1 represent an important general class 

and are characterized by 5n electrons [12] (15n for transition metal clusters). These 
electron counts correspond to a total of 3n/2 occupied skeletal MOs. 

Although the bonding in such compounds has been described in localized terms 
[13] it is instructive to contrast the general bonding features of deltahedral and 
three-connected polyhedra within the same molecular orbital framework. 

An inspection of ab initio and semi-empirical molecular orbital calculations on 
the molecules C,,H, [14] has shown that three-connected spherical polyhedra have 
four strongly bonding (S” + 3P,) radial MOs, and in addition have (n/2) - 2 
bonding L” and (n - 2) L” and En non-bonding surface MOs making a total of 3n/2 

skeletal MOs. (Details of these calculations are given in Appendix I). The different 
molecular orbital patterns for deltahedral and three-connected polyhedra are sum- 
marized in Fig. 2. Clearly the deltahedral provide the minimum number of skeletal 
MOs and the three-connected polyhedra the maximum number consistent with an 
approximately, spherical distribution of bonded skeletal atoms. 

The deltahedra thereby maximize the degree of delocalization and the three-con- 
nected polyhedra maximize the degree of localization of skeletal electron pairs. 

Indeed the latter exhibit a 1 : 1 mapping of skeletal MOs and polyhedral edges, 
which leads to their alternative description as “electron precise” polyhedra [2]. 

Clearly the major difference between the two classes of clusters arises from 
differences in the bonding properties of the L” and z” surface MOs in the two cases. 

Fig. 1. Some examples of three-connected polyhedra. 
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For illustrative purposes the bonding D” MOs (of t,, symmetry) of an octahedron 
and their antibonding z”( tz,) counterparts are depicted in Fig. 3(a). along with the 
D”(a; + e”) and o”(u;’ + e’) MOs of a trigonal prism. In this specific example 

rotation of the bottom triangle, so as to eclipse the top triangle of atoms. results in 
the stabilization of the two e’ components of BW(ls,lc) and the destabilization of 

two e” components of D”(ls,lc) resulting in a set of 4 (n - 2) non-bonding MOs, 
see Fig. 3(b). The formation of matching pairs of non-bonding L” and tW MOs is a 

direct consequence of their relationship through the parity transfornwtior~. which 
reverses the bonding characteristics of an MO (see 1). Strongly bonding Lz, MOs 
have matching strongly antibonding Lz, MOs and weakly bonding LG1 MOs weakly 
antibonding zz, MOs. In the case of the tetrahedron the D” and D” orbitals are 
exactly non-bonding and therefore form a degenerate pair of e MOs. For higher 
nuclearity polyhedra the (n - 2) L” and z7 orbitals are only approximately non- 
bonding. 

The geometric feature which most clearly and generally distinguishes deltahedra 

and three-connected polyhedra is the relative disposition of atoms in successive 
layers. The former have staggered and the latter eclipsed arrangements of atoms. 

El n E-H’ 

] 3 P”/P” I 

p------l 1 CT” c’ 1 

/ 
n E-H 

DELTPlHEDRA COMMON GROUPINGS OF MOs THREE-CONNECTED 

POLYHEDRR 

Fig. 2. A schematic representation of the molecular orbitals for deltahedral and three-connected 

polyhedral E,H, molecules (E = a Main Group atom). Molecular orbitals common to both classes of 

molecule are illustrated in the centre. The differences in skeletal MO bonding patterns arise primarily 

from the t” and z- (L > 1) functions. The (n - 2)L”/z” MOs of the three-connected polyhedral 
molecules are essentially non-bonding. 



on 0 

OCltViEORON xi 

6” 0 

oCTA”EDRDN &Q 

WCONAL @5# 

PRISM 

I 
a1 

411 

" 

IS 1C Sl 

OCTMDRON TRIGONL PRISM 
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Fig. 3. The D” and 5” MOs of a trigonal prism and an octahedron are contrasted in (a) and their relative 

energies represented in (b). 

Fig. 4. Schematic representation of the D” vector surface harmonics (a). The arrows in the Figures 
represent the relative phases and magnitudes of p orbitals functions of the vertex atoms. For D,“,.,,(b) 

only one component is illustrated, the second component is related to that shown by a 90” rotation about 
. . 

the polar axrs. Srmrlarly for D2:,zc (c) the two components are related by a 45’ rotation about the polar 

axis. 
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Three-connected polyhedra therefore have horizontal mirror planes between layers 
of atoms, whereas deltahedra have no such mirror planes. Consequently the different 
bonding properties of L" and En MOs, in the two structure types, must be related to 

differences in bonding character across the equator of the sphere on which the atoms 
lie. Figure 4 illustrates the D" vector surface harmonics in a simplified and general 
fashion. The arrows in the Figure represent the relative phases and magnitudes of 
the atomic p orbital functions [6-91. As indicated above it is sufficient merely to 
explain why certain of the D" functions become non-bonding for three-connected 
polyhedra since the corresponding zn functions must also be non-bonding because 
of the properties of the parity transformation. 

From Fig. 4(a) it is apparent that the 0; function has p’ orbitals pointing 
towards the poles of the sphere. The orbital interactions across the equator are 
bonding as the function posesses a horizontal mirror plane. Figure 5(a) illustrates the 
fact that the bonding interactions will be similar for the D," MOs of clusters with 
staggered or eclipsed geometries and that in both cases the orbital will be bonding. 
The only case for which this is not true is the tetrahedron, which is simultaneously 

STAGGERED 

(a) D; 

t---‘----t-- 

1-4 -4 

Fig. 5. Schematic illustration of the bonding characteristics across the equator of D” functions for 
staggered and eclipsed arrangements of atoms. For D,” (a) both the staggered and eclipsed arrangements 

give bonding interactions. For DC,.,, (b) the interactions are bonding for staggered and anti-bonding for 
eclipsed. See text for discussion of D ;7,rC (c). The sign inversions occur every 180” for 07 and every 90” 
for 0;. 
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three-connected and a deltahedron. The Don orbital of the tetrahedron takes the form 
illustrated in 2a. Because the top and bottom layers are staggered by 90’ the 
cross-equator interaction is m-antibonding. The 0: orbital is also non-bonding and 
degenerate with it (2b). The function is overall non-bonding because the cross-equa- 
tor interaction is bonding. 

For Dl”,.,, functions there is no mirror plane through the equator, but instead the 
equator forms a nodal plane (Fig. 4(b)). Analysis of the bonding characteristics of 
these functions for staggered and eclipsed geometries (Fig. 5(b)) reveals that, 
whereas in the former case the cross-equator interactions are bonding, in the latter 
they are antibonding. It is these antibonding interactions which make the D~s,,c MOs 
non-bonding for all prisms. These orbitals are bonding within the planes above and 
below the equator and antibonding across the equator, thereby making them 
non-bonding in total. If, however, more layers are added to the structure then the 

DTv,,c orbitals become bonding because eclipsed atoms on the same side of the 
equator (Fig. 4(b)) have p orbitals interacting in-phase. 

A trigonal prism has three D" MOs-D,” bonding and Dl”, I< non-bonding. The 
addition of two more atoms to form a cube leads to the formation of two additional 
MOs based on the D” functions (D& ) shown in Fig. 4(c). These functions are 
related by a 45” rotation about the polar axis. The cube has atoms eclipsed in planes 
above and below the equator, disposed at 90” intervals around the sphere. The D& 

functions may be considered (Fig. 5(c)) as having a pe component with maximum 
in-plane antibonding character at 90” intervals (vertical arrows in Fig. 5(c)) and apP 
component with maximum in-plane bonding character at 90“ intervals (horizontal 
arrows). These two components are 45” apart and both are bonding across the 
equator. D,", has p’ components at 19 = 0, 90, 180, 270’ whereas DTs (rotated by 45’ 
relative to D,“,) has pq components at these angles. Therefore it can be seen that DTc 

is antibonding within the upper and lower layers but bonding across the equator; 
therefore it is overall non-bonding. In contrast the D,“, orbital is bonding within and 
between the layers and is overall bonding. The square-antiprisms has the upper and 
lower layers staggered by an angle of 45” so that (Fig. 5(c)) both the 2s and 2c 
functions have p’ components only on one side of the equator and pP components 
on the other, making one layer bonding and the other anti-bonding. The cross-equa- 
tor interactions are bonding. The result is to make the D,“,,zc pair of orbitals 
degenerate and overall bonding for the antiprism. The non-bonding Dee orbital in 
the prism becomes more bonding in the antiprism, while the originally strongly 
bonding D,“, orbital becomes less bonding. 

For the three-connected polyhedral clusters with more than eight atoms both of 
the D; orbitals are bonding. That this is so may readily be understood by consider- 
ing the pentagonal and hexagonal prisms. There are now in each layer more than 
four atoms so that their ‘p angles differ by less than 90”. This means that for the OTC 

function the atoms are not at the positions for maximum in-plane antibonding 
interaction. For the pentagonal prism the non-bonding L” functions are D~s,.l, and 

Fz”s.2C. The CL functions are illustrated in 3. Since they have a nodal plane passing 
through the equator, their similarity to D&, can be readily appreciated. The 
hexagonal prism has an extra non-bonding F;lc orbital which is similar to Dfc in the 

case of the cube. The Fg,3c MOs of the hexagonal prism (Fig. 6) are both bonding 
across the equator (possess a horizontal mirror plane) but one is bonding within the 

upper face and the other is antibonding. 



(20) D"o (2b) o”, 

The analysis above has demonstrated the occurrence of the following L" non- 
bonding orbitals: l-tetrahedron, 2-trigonal prism, 3-cube, etc., i.e. (f - 1)L”. Since 
these must be matched by an equal number of In MOs, it follows that these 
polyhedra have n - 2 non-bonding molecular orbitals associated with them. In 

addition they have (n - 4)/2 bonding L" MOs and four S” and P" MOs (See 
Appendix II for details). Therefore the total number of MOs for three-connected 
polyhedral molecules is: 

(n-2)+(n_4)/2+4=3n/2 

It follows that Main Group three-connected polyhedral molecules are char- 
acterized by 5n electrons and transition metal polyhedral molecules by 15n electrons. 

Table 2 gives specific examples of these types of polyhedral molecules. 

(a) Fj5 (b) Fj, 

Fig. 6. The F3;,3r pair of molecular orbitals for a hexagonal prism. 
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TABLE 2 

EXAMPLES OF THREE-CONNECTED POLYHEDRAL MOLECULES 

No. of Geometry Example 
Vertex atoms 
n 

Electron count 

(a) Main Group examples (5n electrons) 
4 Tetrahedral 

6 Trigonal prism 

8 Cube 

Cuneane 
10 Pentagonal prism 

20 Dodecahedron 
(b) Transition metal examples (15~1 electrons) 

4 Tetrahedral 
6 Trigonal prism 
8 Cube 

8 Cuneane 

C4(‘W4 PI 
P4. As, 
Sn,Bi,*- 

C,H, [12b] (prismane) 

CsH, (cubane) [12c] 

Cs Hs (cuneane) 
C,,H,e [12d] (pentaprismane) 
C,,H,, [12e] (dodecahedrane) 

Ir4(COh2 lIsaI 60 

l%C(CO),,l*- l15bl 90 

l%(PPh),(C%I [15cl 120 

l%S,(N’Bu),(NO),I lt5dl 120 

20 

30 
40 

50 

100 

Capped cluster molecules 

The arguments developed above are particularly useful for analysing the bonding 
in capped three-connected polyhedral molecules. If, as is generally the case, the 
frontier orbitals of the capping atoms match the bonding and non-bonding skeletal 
MOs in symmetry then no new bonding or non-bonding skeletal MOs are intro- 
duced. This capping principle [16] leads to the following electron counts for Main 
Group and transition metal molecules: 5n + 2m, and 15n + 12m; where m is the 
number of capping atoms and n the number of atoms in the parent three-connected 
polyhedron. 

When there are three or more capping atoms forming a ring their frontier orbitals 
generate a combination of the &,” type which is not matched by the occupied skeletal 
MOs (S”, P”, L”, En (L > 1)) of the three-connected polyhedron. It can interact with 
an antibonding p,” skeletal MO, resulting in the presence of an additional weakly 
bonding ?t orbital. It generally has the symmetry a2 for a C,,, point group and is 
schematically illustrated in 4. Figure 7 shows part of the MO diagram for the 
specific example of a tricapped-trigonal prism. From the previous discussion it 
follows that a weakly bonding F: orbital is parity-matched by a weakly antibonding 
F,” orbital. The F:(a;‘) MO results from overlap of the P,” function generated by the 
capping atoms with the PO, skeletal MO of the trigonal prism (see Fig. 7). Analysis of 
the bonding in the tetracapped cube (Dbh symmetry) has shown that this structure 
also has a frontier orbital pair consisting of a weakly bonding Fl MO and a weakly 

antibonding F,” MO. 
In summary, capped three-connected-polyhedra1 clusters are characterized by 

electron counts of 5n + 2m (15n + 12m for transition metals) unless the capping 
atoms form a ring, in which case the electron count can be either 5n + 2m + 2 or 
5n + 2m + 4 (depending upon whether or not the weakly antibonding F: orbital is 
occupied). For the tricapped trigonal prism this leads to electron counts of 4N + 2 or 
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TABLE 3 

EXAMPLES OF CAPPED THREE-CONNECTED POLYHEDRAL MOLECULES (m = no. of cap- 

ping atoms) 

n m Geometry Example Electron count 

I. Based on tetrahedron (60 + 12m electrons) 

4 1 Trigonal Os,(CO),, V7al 12 

bipyramid 

4 2 Bicapped Os,(CO),, U7bl 84 
tetrahedron 

4 3 Tricapped CoRu,Au,(PPh,),(CO),z H7cl 96 
tetrahedron 

2. Based on trigonolpnsm (90 + I2m electrons) 

6 2 Bicapped trigonal Cu,Rh6C(CO),,(NCMe), [17d] 114 
prism 

3. Based on cube (I20 + 12m electrons) 
8 5 Pentacapped cube 

PO” 

60” 

P” 0 

p’” 0 

o-&m 

PX 
8 iI _--_ 

‘\ I 0 
I 

TRIGONAL PRISM TRICAPPED 

TRIGONAL PRISM 

CAPPING ATOMS 

Fig. 7. Molecular orbital interaction diagram for a tricapped trigonal prism as which emphasises the role 

of the f’: and Fl functions on the capping atoms. 
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4N + 4 where N = n + m. Wade [18] and Corbett [19] have discussed the geometric 
consequences of these alternative electron counts for Main Group tricapped-trigonal 
prismatic molecules. 

Examples of capped three-connected transition metal clusters are given in Table 
3. The majority of these examples have 15n + 12m electrons because the capping 
atoms do not introduce any new symmetry types. The pentacapped centred cube has 
a ring of four capping atoms but retains an electron count of 15n + 12m, i.e. 180. 
The calculations suggest the possibility of forming a more reduced species with 
either 181 or 182 electrons. This corresponds to filling of the F,” level. The 

tetracapped centred-pentagonal prism [Rh,,C,(CO)2a]- [20], which has the four 
capping atoms forming a ring (three cap square faces and the other caps a 
pentagonal face), has an electron count of 200 (15n + 12m + 2). This is in agreement 
with the ideas developed above. 

In summary the above analysis has demonstrated how the molecular orbitals of 
three-connected polyhedral molecules differ from those of deltahedra. The analysis 
has been based on the Stone Tensor Surface Harmonic Methodology. In a subse- 
quent paper localised orbital schemes for three-connected polyhedra and deltahedra 
will be presented which also account for the differences in their electronic structures. 
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Appendix I 

Extended Hiickel calculations were performed on the species C,H, (Td), C,H, 
(D3h) and C,H, (0,) and on the deltahedron C,H, (0,) and the aruchno-(del- 
tahedral fragment) C,H, (Ddd). The bond lengths used were C-C 1.54 and C-H 
1.09 A. 

PARAMETERS USED IN CALCULATIONS 

Atom Orbital H.; (eW 

C 2s - 21.4 1.625 
2P -11.4 1.625 

H IS - 13.6 1.30 

The Hiickel constant k was taken as equal to 1.75. Ab initio and semi-empirical 
calculations quoted [14] were of the following types: STO-3G, 4-31G, SCF-X~Y, 
MIND0/3 and INDO. 
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Appendix I1 

BONDING AND NON-BONDING SKELETAL MOs OF SOME THREE-CONNECTED POLY- 
HEDRAL CLUSTERS 

” Bonding Non-bonding 

4 (r,) S”(u,)P”(t,) 

6 (D3h) S”(a;)P”(u;+ e')D,"(a;) 

8((A) S"(a,,).P"(t,u). D,:,,(eg) 
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